Selecting the Right Power Semiconductors for Multi-MHz Power Converters

Zikang Tong, Jia Zhuang, Grayson Zulauf Ph.D., Jaume Roig-Guitart, Prof. Jim Plummer, and Prof. Juan Rivas,
jmrivas@stanford.edu
September 1, 2020
Introduction
Multi-MHz Power Converters: Market and Applications

Wireless Power
- 6.78 MHz, 13.56 MHz DC-DC systems
- At higher frequency, coils are smaller and cheaper, safety and regulation are improved [Airfuel].

 [Source: Nucurrent]

Plasma Generation
- 13.56 MHz, 40.68 MHz DC-RF Inverters.
- High Power and Efficient: (100’s of W to 10’s of kW).
- Semiconductor etchers, spacecraft propulsion.

 [Source: Liang et al., JESTPE 2017]

Magnetic Resonance Imaging
- RF generators for high-frequency magnetic fields.

 [Source: Radiology Affiliates Imaging]
Multi-MHz Power Converters: Market and Applications

Wireless Power

- 6.78 MHz, 13.56 MHz DC-DC systems
- At higher frequency, coils are smaller and cheaper, safety and regulation are improved [Airfuel].

[Source: Nucurrent]

Plasma Generation

- 13.56 MHz, 40.68 MHz DC-RF Inverters.
- High Power and Efficient: (100’s of W to 10’s of kW).
- Semiconductor etchers, spacecraft propulsion.

[Source: Liang et al., JESTPE 2017]

Magnetic Resonance Imaging

- RF generators for high-frequency magnetic fields.

[Source: Radiology Affiliates Imaging]
Multi-MHz Power Converters: Market and Applications

Wireless Power
- 6.78 MHz, 13.56 MHz DC-DC systems
- At higher frequency, coils are smaller and cheaper, safety and regulation are improved [Airfuel].

Plasma Generation
- 13.56 MHz, 40.68 MHz DC-RF Inverters.
- High Power and Efficient: (100’s of W to 10’s of kW).
- Semiconductor etchers, spacecraft propulsion.

Magnetic Resonance Imaging
- RF generators for high-frequency magnetic fields.

[Source: Nucurrent]

[Source: Liang et al., JESTPE 2017]

[Source: Radiology Affiliates Imaging]
Areas of Investigations

Control

![Control Diagram]

Periods become shorter and delays in feedback become more challenging.

EMI

![EMI Diagram]

Higher frequency current creates noise that propagates farther.

Magnetics

![Magnetics Diagram]

Core loss and winding loss increase with frequency.

Semiconductors

![Semiconductors Diagram]

Switching loss increases with frequency.
Areas of Investigations

Control

Periods become shorter and delays in feedback become more challenging.

\[H(s) + G(s) \]

EMI

Higher frequency current creates noise that propagates farther.

Magnetics

Core loss and winding loss increase with frequency.

Semiconductors

Switching loss increases with frequency.
Areas of Investigations

Control
Periods become shorter and delays in feedback become more challenging.

EMI
Higher frequency current creates noise that propagates farther.

Magnetics
Core loss and winding loss increase with frequency.

Semiconductors
Switching loss increases with frequency.
Areas of Investigations

Control

Periods become shorter and delays in feedback become more challenging.

\[H(s) + G(s) \]

EMI

Higher frequency current creates noise that propagates farther.

Magnetics

Core loss and winding loss increase with frequency.

Semiconductors

Switching loss increases with frequency.
Soft-switching Enables High-Frequency Power Electronics

Hard-Switching

- Switching loss $\propto f_{sw}$.
- Efficiency \downarrow as $f_{sw} \uparrow$.
Soft-switching Enables High-Frequency Power Electronics

- Switching loss $\propto f_{sw}$.
- Efficiency \downarrow as $f_{sw} \uparrow$.
- Adding additional resonant elements enables soft-switching.
Frequency vs. Conduction Loss Tradeoff

- When $f_{sw} \uparrow$, L and $C \downarrow$.
- This includes the power device’s C_{oss}.
Frequency vs. Conduction Loss Tradeoff

- When f_{sw} ↑, L and C ↓.
- This includes the power device’s C_{oss}.
- If power device’s C_{oss} is too large, soft-switching cannot be achieved and/or circulating current increases.
Frequency vs. Conduction Loss Tradeoff

- When $f_{sw} \uparrow$, L and $C \downarrow$.
- This includes the power device’s C_{oss}.
- If power device’s C_{oss} is too large, soft-switching cannot be achieved and/or circulating current increases.
- For power semiconductors, $C_{oss} \propto A$ but $R_{on} \propto 1/A$.
When $f_{sw} \uparrow$, L and $C \downarrow$.
- This includes the power device's C_{oss}.
- If power device’s C_{oss} is too large, soft-switching cannot be achieved and/or circulating current increases.
- For power semiconductors, $C_{oss} \propto A$ but $R_{on} \propto 1/A$.
- At higher frequencies, for the same breakdown voltage, only higher R_{on} devices can be used.
Frequency vs. Conduction Loss Tradeoff

- When f_{sw} ↑, L and C ↓.
- This includes the power device’s C_{oss}.
- If power device’s C_{oss} is too large, soft-switching cannot be achieved and/or circulating current increases.
- For power semiconductors, $C_{oss} \propto A$ but $R_{on} \propto 1/A$.
- At higher frequencies, for the same breakdown voltage, only higher R_{on} devices can be used.
- Conduction losses ↑, and efficiency ↓.
WBG Devices to the Rescue

For power semiconductors, sR_{on} (R_{on} for a 1 mm2 area) scales with V_{BV},

\[R_{on} \propto \frac{1}{A} \]

\[C_{oss} \propto A \]

The Takeaway: WBG devices allow ↓C_{oss} for the same R_{on} and V_{BV} which ↑efficiencies at higher switching frequencies compared to Si.
For power semiconductors, sR_{on} (R_{on} for a 1 mm2 area) scales with V_{BV},

\[sR_{on} = \frac{4V_{BV}^2}{\mu \kappa_s \epsilon_0 E_{cr}^3} \]

The Takeaway: WBG devices allow ↓C_{oss} for the same R_{on} and V_{BV} which ↑efficiencies at higher switching frequencies compared to Si.
WBG Devices to the Rescue

- For power semiconductors, sR_{on} (R_{on} for a 1 mm^2 area) scales with V_{BV},
- but also depends on material properties.

\[
sR_{on} = \frac{4V_{BV}^2}{\mu \kappa_s \epsilon_0 E_{cr}^3} \quad \leftarrow \text{Breakdown Voltage}
\]

\[
\mu \kappa_s \epsilon_0 E_{cr}^3 \quad \leftarrow \text{Material Properties}
\]

The Takeaway: WBG devices allow $\downarrow C_{oss}$ for the same R_{on} and V_{BV} which \uparrow efficiencies at higher switching frequencies compared to Si.
WBG Devices to the Rescue

- For power semiconductors, sR_{on} (R_{on} for a 1 mm2 area) scales with V_{BV},
- but also depends on material properties.

\[
sR_{on} = \frac{4V_{BV}^2}{\mu \kappa_s \epsilon_0 E_{cr}^3}
\]

Breakdown Voltage
Material Properties

The Takeaway:
- WBG devices allow $\downarrow C_{oss}$ for the same R_{on} and V_{BV} which \uparrow efficiencies at higher switching frequencies compared to Si.
WBG Devices to the Rescue

- For power semiconductors, sR_{on} (R_{on} for a 1 mm2 area) scales with V_{BV},
- but also depends on material properties.

$$sR_{on} = \frac{4V_{BV}^2}{\mu R_s \epsilon_0 E_{cr}^3} \rightarrow \text{Breakdown Voltage}$$
$$\rightarrow \text{Material Properties}$$

The Takeaway: WBG devices allow ↓ C_{oss} for the same R_{on} and V_{BV} which ↑ efficiencies at higher switching frequencies compared to Si.
In our 3-30 MHz converters, the efficiencies were typically 5-10% lower than simulation.
The Issue: Actual Current Device Performance at HF

- In our 3-30 MHz converters, the efficiencies were typically 5-10\% lower than simulation.
- Even when carefully matching waveforms and modeling component losses.

The Issue: Actual Current Device Performance at HF

- In our 3-30 MHz converters, the efficiencies were typically 5-10% lower than simulation.
- Even when carefully matching waveforms and modeling component losses.
- **Case Study:** 100 W DC-RF resonant inverter using a 600 V GaN device with a second switch in parallel that is always off.

![Diagram of Multi-Resonant Network and Load Network]

The Issue: Actual Current Device Performance at HF

- In our 3-30 MHz converters, the efficiencies were typically 5-10% lower than simulation.
- Even when carefully matching waveforms and modeling component losses.
- **Case Study:** 100 W DC-RF resonant inverter using a 600 V GaN device with a second switch in parallel that is always off.
 - The second switch serves as a parallel capacitor.

![Multi-Resonant Network](image)

The Issue: Actual Current Device Performance at HF

- In our 3-30 MHz converters, the efficiencies were typically **5-10%** lower than simulation.
- Even when carefully matching waveforms and modeling component losses.
- **Case Study:** 100 W DC-RF resonant inverter using a 600 V GaN device with a second switch in parallel that is always off.
 - The second switch serves as a parallel capacitor.

The Issue: Actual Current Device Performance at HF

- In our 3-30 MHz converters, the efficiencies were typically **5-10%** lower than simulation.
- Even when carefully matching waveforms and modeling component losses.
- **Case Study:** 100 W DC-RF resonant inverter using a 600 V GaN device with a second switch in parallel that is always off.
 - The second switch serves as a parallel capacitor.
 - Expect 94% efficiency in simulation, but only get 89%.
 - And both FETs exhibit losses!

The Issue: Actual Current Device Performance at HF

- Same performance is observed in GaN and SiC Schottky diodes.
- Suspected the extra losses are from charging/discharging of the C_{oss} during off-state.

27.12 MHz, 25 W Rectifier

C_{oss} Loss Characterization: Sawyer-Tower Circuit
In 1929: Sawyer and Tower developed a method to characterize dielectric hysteresis in Rochelle Salt.

ROCHELLE SALT AS A DIELECTRIC

BY C. B. SAWYER AND C. H. TOWER
THE BRUSH LABORATORIES, CLEVELAND

(Received November 6, 1929)

Sawyer and Tower, “Rochelle Salt as a Dielectric”, Phys. Rev. 35, 1929
Methodology: Sawyer-Tower Circuit

- Device remains always off.
Methodology: Sawyer-Tower Circuit

- Device remains always off.
- Large sinusoidal voltage is applied.
 - C_{oss} and C_{ref} forms capacitor divider.
Methodology: Sawyer-Tower Circuit

- Device remains always off.
- Large sinusoidal voltage is applied.
 - C_{oss} and C_{ref} forms capacitor divider.
- Directly measure the voltage across the DUT.
Methodology: Sawyer-Tower Circuit

- Device remains always off.
- Large sinusoidal voltage is applied.
 - C_{oss} and C_{ref} forms capacitor divider.
- Directly measure the voltage across the DUT.
- Obtain the charge stored in the DUT using a lossless and linear reference capacitor C_{ref}.
Methodology: Sawyer-Tower Circuit

- Device remains always off.
- Large sinusoidal voltage is applied.
 - C_{oss} and C_{ref} forms capacitor divider.
- Directly measure the voltage across the DUT.
- Obtain the charge stored in the DUT using a lossless and linear reference capacitor C_{ref}.
- Obtain a $Q-V$ curve for charging...

![Graphs showing V_{DS} vs. time and V_{DS} vs. Q_{oss}]
Methodology: Sawyer-Tower Circuit

- Device remains always off.
- Large sinusoidal voltage is applied.
 - C_{oss} and C_{ref} forms capacitor divider.
- Directly measure the voltage across the DUT.
- Obtain the charge stored in the DUT using a lossless and linear reference capacitor C_{ref}.
- Obtain a Q-V curve for charging and discharging.
Methodology: Sawyer-Tower Circuit

- Device remains always off.
- Large sinusoidal voltage is applied.
 - \(C_{oss} \) and \(C_{ref} \) forms capacitor divider.
- Directly measure the voltage across the DUT.
- Obtain the charge stored in the DUT using a lossless and linear reference capacitor \(C_{ref} \).
- Obtain a \(Q-V \) curve for charging and discharging. Hysteresis equates to Losses (\(E_{diss} \)) per Cycle.
In 2014/16: Fedison used the Sawyer-Tower circuit to characterize Si SJ MOSFETs at 200 kHz.

Results indicate certain devices have significant hysteresis.

Fedison and Harrison, “C_{oss} Hysteresis in Advanced Superjunction MOSFETs”, APEC 2016.
Fedison et al., “C_{oss} related energy loss in power MOSFETs used in zero-voltage-switched applications”, APEC 2014.
Our Findings on GaN

▶ **Recently**: We measured commercial GaN-on-Si HEMTs.

▶ Results can be modeled using Steinmetz fitting similar to magnetic core losses.
 - Increases with V_{DS} and f_{sw}
 - $P_{diss} = kf^{1.6}V^\beta$

▶ Losses increase with dV/dt, indicating devices perform worse at faster frequencies.

Our Findings on GaN

- **Recently:** We measured commercial GaN-on-Si HEMTs.
- Results can be modeled using Steinmetz fitting similar to magnetic core losses.
 - Increases with V_{DS} and f_{sw}
 - $P_{diss} = k f^{1.6} V^β$
- Losses increase with dV/dt, indicating devices perform worse at faster frequencies.

<table>
<thead>
<tr>
<th>f_{sw}</th>
<th>dV/dt</th>
<th>E_{diss}</th>
<th>P_{diss}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz</td>
<td>70 V/ns</td>
<td>0.7 µJ</td>
<td>7 W</td>
</tr>
<tr>
<td>30 MHz</td>
<td>150 V/ns</td>
<td>0.9 µJ</td>
<td>27 W</td>
</tr>
<tr>
<td>54 MHz</td>
<td>250 V/ns</td>
<td>1.5 µJ</td>
<td>81 W</td>
</tr>
</tbody>
</table>

Our Findings on SiC

- Same study done on SiC MOSFETs and diodes.
- Results indicate E_{diss} is independent of frequency and dV/dt, so $P_{diss} \propto f_{sw}$.
- Losses can scale with f_{sw} slower than GaN!

Device Selection Road Map
Total semiconductor losses in soft-switching conditions can be categorized as:

\[P_{dev} = P_{cond} + P_{C_{oss}} + P_{gate} \]

\[\downarrow \]

\[P_{dev} = R_{on}I_{rms}^2 + k_f^{\alpha}V^\beta + f_{sw}C_{iss}V_{gate}^2 \]
Comparing Si, SiC, and GaN Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>sR_{on} Characteristics</th>
<th>V_{BV} Values</th>
<th>P_{Coss} Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Si MOSFET</td>
<td>High sR_{on}, $5.93 \times 10^{-9} V_{BV}^{2.5}$ [Ω cm2]</td>
<td>$2.5 \times 10^{-9} V_{BV}^{2.5}$ [Ω cm2]</td>
<td>P_{Coss}∝f_{sw}^2, but can be very low for LV devices.</td>
</tr>
<tr>
<td>Si Superjunction MOSFET</td>
<td>Moderate sR_{on}, $0.2d^{\frac{5}{4}} V_{BV}$ [Ω cm2]</td>
<td>$d^{\frac{5}{4}} V_{BV}$ [Ω cm2]</td>
<td>P_{Coss} highly variable and unusable for HF/VHF ($E_{loss} / E_{store} \approx 50%$).</td>
</tr>
<tr>
<td>Vertical SiC MOSFET</td>
<td>Low sR_{on}, $1.2 \times 10^{-11} V_{BV}^{2.5}$ [Ω cm2]</td>
<td>$1.2 \times 10^{-11} V_{BV}^{2.5}$ [Ω cm2]</td>
<td>P_{Coss}∝f_{sw}, P_{gate}: Large C_{iss} and $V_{gate} \approx 10$ V.</td>
</tr>
<tr>
<td>GaN-on-Si HEMTs</td>
<td>Lowest sR_{on}, $3.6 \times 10^{-12} V_{BV}^{\frac{7}{3}}$ [Ω cm2]</td>
<td>$3.6 \times 10^{-12} V_{BV}^{\frac{7}{3}}$ [Ω cm2]</td>
<td>P_{gate}: Low P_{gate}, small C_{iss} and $V_{gate} \approx 5$ V.</td>
</tr>
</tbody>
</table>

Comparing Si, SiC, and GaN Devices

Vertical Si MOSFET
- High sR_{on}, $5.93 \times 10^{-9} V_{BV}^{2.5} \, [\Omega \text{cm}^2]$
- $P_{C_{oss}} \propto f_{sw}^2$, but can be very low for LV devices.

Si Superjunction MOSFET
- Moderate sR_{on}, $0.2d^{\frac{5}{4}} V_{BV} \, [\Omega \text{cm}^2]$
- $P_{C_{oss}}$ highly variable and unusable for HF/VHF ($E_{loss}/E_{store} \approx 50\%$).

Vertical SiC MOSFET
- Low sR_{on}, $1.2 \times 10^{-11} V_{BV}^{2.5} \, [\Omega \text{cm}^2]$
- $P_{C_{oss}} \propto f_{sw}$.

GaN-on-Si HEMTs
- Lowest sR_{on}, $3.6 \times 10^{-12} V_{BV}^{\frac{7}{3}} \, [\Omega \text{cm}^2]$
- $P_{C_{oss}} \propto f_{sw}^{1.6}$.
Comparing Si, SiC, and GaN Devices

Vertical Si MOSFET
- High sR_{on}, $5.93 \times 10^{-9} V_{BV}^{2.5} [\Omega \text{cm}^2]$
- $P_{Coss} \propto f_{sw}^2$, but can be very low for LV devices.
- Moderate P_{gate}: Large C_{iss} and $V_{gate} \approx 10$ V.

Si Superjunction MOSFET
- Moderate sR_{on}, $0.2d^{\frac{5}{4}} V_{BV} [\Omega \text{cm}^2]$
- P_{Coss} highly variable and unusable for HF/VHF ($E_{loss}/E_{store} \approx 50\%$).
- Moderate P_{gate}: Large C_{iss} and $V_{gate} \approx 10$ V.

Vertical SiC MOSFET
- Low sR_{on}, $1.2 \times 10^{-11} V_{BV}^{2.5} [\Omega \text{cm}^2]$
- $P_{Coss} \propto f_{sw}$.
- High P_{gate}: Large C_{iss} and $V_{gate} \approx 20$ V.

GaN-on-Si HEMTs
- Lowest sR_{on}, $3.6 \times 10^{-12} V_{BV}^{\frac{7}{3}} [\Omega \text{cm}^2]$
- $P_{Coss} \propto f_{sw}^{1.6}$.
- Low P_{gate}: small C_{iss} and $V_{gate} \approx 5$ V.

Comparing Si, SiC, and GaN Devices

- **Verdict:** GaN and SiC typically preferable over Si for maximum efficiency.
- However, Si can still be used for ≤ 200 V applications; HV Si devices have much higher C_{oss} losses and R_{on}.
- **Caveats:**
 - Cost of WBG devices can be much higher.
 - Thermal dynamics are not considered for simplicity.
 - GaN HEMTs are not avalanche-rated.
Case Study: GaN vs. SiC

- For a fixed voltage application, consider $P_{total} = P_{cond} + P_{Coss}$
For a fixed voltage application, consider $P_{dev} = P_{cond} + P_{Coss}$.

At low f_{sw}, C_{oss} losses are negligible, so GaN is favored.
Case Study: GaN vs. SiC

▶ For a fixed voltage application, consider $P_{dev} = P_{cond} + P_{Coss}$
▶ At higher current and higher-frequency, $P_{cond} \gg P_{Coss}$.
Case Study: GaN vs. SiC

- For a fixed voltage application, consider $P_{\text{dev}} = P_{\text{cond}} + P_{\text{Coss}}$
- At lower current and higher-frequency, $P_{\text{cond}} \ll P_{\text{Coss}}$.
For a fixed voltage application, consider $P_{dev} = P_{cond} + P_{Coss}$

Fill in the gaps.
For a fixed voltage application, consider $P_{dev} = P_{cond} + P_{Coss} + P_{gate}$

- P_{gate} is much higher in SiC than GaN.
For a fixed voltage application, consider $P_{dev} = P_{cond} + P_{Coss} + P_{gate}$

We observe this with real devices (≈ 650 V, 22 A rating).
SiC Gating Solution: Resonant Gating

- $P_{\text{gate}} = f_{\text{sw}} C_{\text{iss}} V_{\text{gate}}^2$ can be reduced with resonant gate drives.
- Demonstrated a 30 MHz resonant gate drive using a SiC device with $5 \times$ lower gating losses.

Origins of C_{oss} Losses: GaN
GaN D-HEMT Power Devices

- GaN is usually grown on Si substrate for power devices.
- GaN and Si have large thermal and lattice mismatches.
GaN is usually grown on Si substrate for power devices.

- GaN and Si have large thermal and lattice mismatches.
- Buffer layers are designed as an insulator to reduce mismatch and suppress vertical leakage.
GaN D-HEMT Power Devices

- **Issue 1**: The substrate is usually lightly Boron-doped, p-type Silicon, which results in high substrate resistance.

- Defects and traps exist in the buffer layers.

- Trapping dynamics have been one of the most critical issues in GaN HEMTs.

- V_{TH} and R_{ON} shift

- Dynamic $R_{DS,ON}$, C_{OSS} losses in soft-switching
Issue 1: The substrate is usually lightly Boron-doped, p-type Silicon, which results in high substrate resistance.

Issue 2: Defects and traps exist in the buffer layers.

Trapping dynamics have been one of the most critical issues in GaN HEMTs.

- V_{TH} and R_{ON} shift
- Dynamic $R_{DS,ON}$
GaN D-HEMT Power Devices

- **Issue 1**: The substrate is usually lightly Boron-doped, p-type Silicon, which results in high substrate resistance.
- **Issue 2**: Defects and traps exist in the buffer layers.
- Trapping dynamics have been one of the most critical issues in GaN HEMTs.
 - V_{TH} and R_{ON} shift
 - Dynamic $R_{DS,ON}$
 - C_{OSS} losses in soft-switching
GaN HEMTs: Separating the C_{OSS} Loss Contributions

To better model the C_{OSS} losses, the loss contribution from different layers are separated.

- Resistive loss from lightly doped substrate (R_{SUB})
- Leakage current path from buffer (R_{GaN})
- Trapping related capacitive hysterestic loss from buffer (C_{GaN})

Zhuang et al., IEEE COMPEL 2019.
C_{OSS} Loss with External Substrate Resistance

The loss measured directly across the device does not change much. With higher R_{EXT} value, the additional loss is higher.

Zhuang et al., IEEE COMPEL 2019.
C_{OSS} Loss with External Substrate Resistance

- The loss measured directly across device does not change much.
- With higher R_{EXT} value, the additional loss is higher.
C_{OSS} Loss with External Substrate Resistance

- The loss measured directly across device does not change much.
- With higher R_{EXT} value, the additional loss is higher.

Zhuang et al., IEEE COMPEL 2019.
Surface and Buffer Traps

Two types of traps dominate in GaN HEMTs:

1. **Buffer traps**
 - originated from carbon doping and fabrication process etc.
 - usually deeper traps with high activation energy

2. **Surface traps**
 - originated from dielectric material, mask design etc.
 - usually shallower traps with low activation energy
Surface and Buffer Traps

- To estimate how trapping affects the measured C_{oss} loss - temperature is varied in Sawyer-Tower setup.
- To better capture the trapping dynamics, a Sentaurus TCAD device simulation of the HEMT stack is built and calibrated.
Temperature-Dependent C_{OSS} Loss - Trap-related loss

Above 100°C, C_{OSS} losses are nearly insensitive to temperature.

To estimate the contribution of each loss mechanism, we assume that at 100°C trap-related losses are eliminated.

Zhuang et al., IEEE COMPEL 2019.
Temperature-Dependent C_{OSS} Loss

Charge stored and discharged in output capacitance at $V_{DS} = 400$ V at 24°C (left) and 100°C (right).

The total charge stored is identical (70 nC) but the losses are $3 \times$ higher at room temperature.
Temperature-Dependent C_{OSS} Loss

The total charge stored is identical (70 nC) but the losses are 3 times higher at room temperature.

\[V_{ds} \text{ [V]} \]

\[Q_{oss} \text{ [nC]} \]
Temperature-Dependent C_{OSS} Loss

- Charge stored and discharged in output capacitance at $V_{DS}=400$ V at 24°C (left) and 100°C (right).
- The total charge stored is identical (70 nC) but the losses are $3 \times$ higher at room temperature.
Temperature-Dependent C_{OSS} Loss - Trap-related loss

- At room temperature, the measured trap-related losses are around 68\% to 80\% of the total C_{OSS} losses.
- Guacci, 2018: 70\% reduction with buffer redesign

Zhuang et al., IEEE COMPEL 2019.
Guacci et al., IEEE TPEL 2018.
From TCAD: C_{OSS} Losses vs. Trapping levels

- A mixed-mode simulation (Sawyer-Tower circuit + HEMT physical stack) is built in Sentaurus TCAD.
- Traps with a wide range of energy levels are added to the buffer layers, and the simulated C_{OSS} is plotted.
- It is observed that the traps that are mainly responsible for C_{OSS} losses is in the range of 0.5eV from valence band.

Zhuang et al., ECCE 2020.

- C_{oss} losses can be separated into contributions from highly-resistive substrate and trapping related buffer layers.

- Identifying trap energy levels and origins can provide guidelines on buffer and fabrication optimizations.
Origins of C_{oss} Losses: SiC
SiC Device Physics and Structures: Incomplete Ionization

- **Incomplete Ionization**: In WBG devices, dopants require more energy and time to form e\(^-\) and h\(^+\) from an excitation.
- Resistance and capacitance of the device structure are dynamic when excited by high-frequency voltage/currents.
Termination Region: In vertical power devices, the edges of the die require support of high electric fields.
SiC Devices C_{oss} Losses: The Culprit

- Through collaboration with ON Semi., we used TCAD to identify the loss origins.
- Simulated a 1200 V ON Semi SiC Power MOSFET with incomplete ionization physics activated and deactivated.

SiC Devices C_{oss} Losses: The Culprit

Observation 1: Incomplete ionization explains C_{oss} loss behavior.

Losses are frequency independent with incomplete ionization.

Observation 2: Majority of the C_{oss} losses occur at the termination.

SiC Devices C_{oss} Losses: The Culprit

- **Observation 3**: Trends and values between experiment and simulation match.
- Indicates proper modeling of the device and physics.

SiC Devices C_{oss} Losses: The Culprit

- Tested custom SiC dies from ON Semi. with different termination sizes and patterns.

Tested custom SiC dies from ON Semi. with different termination sizes and patterns.

Observation 4: Different lengths and structures of the termination create different loss trends.

C_{oss} losses increase with termination length.
SiC Devices C_{oss} Losses: The Culprit

- Tested custom SiC dies from ON Semi. with different termination sizes and patterns.
- **Observation 4:** Different lengths and structures of the termination create different loss trends.
- C_{oss} losses increase with termination length.
- Losses scale differently between guard ring (disconnected JTE) and JTE terminations.
 - JTE is better for higher voltages.
 - Guard ring is better for lower voltages.

SiC Devices: Summary

- C_{oss} losses occur mainly due to resistive charging/discharging path through the termination.
- Behavior is controlled by incomplete ionization physics.
- The size and type of termination structure significantly affect losses.
- Leaves an opportunity for better modeling of SiC devices for HF converters and optimization of termination designs.
Conclusion
Other Works

- **Measurement and Modeling:**
 - *Bosch*: Developed a dV/dt (current-controlled) Sawyer-Tower testing method.
 - *EPFL*: Utilized low-cost, nonlinear resonant method to characterize C_{oss} losses.

- **Loss Origins/Mitigation:**
 - *ETH Zurich/Infineon*: Showed that the design of the buffer region influences C_{oss} losses in GaN devices.

Nikoo et al., “Measurement of Large-Signal C_{oss} and C_{oss} Losses of Transistors Based on Nonlinear Resonance,” TPEL 2020.
Current Performance Benchmarks at MHz Frequency

De-rating devices and understanding the C_{OSS} losses → better performance.

- **Wireless power transfer - 6.78 MHz, 95% DC-DC efficiency Using 150 V Si**

- **Radio frequency Power Amplifier - 40.68 MHz, 90% efficiency**

Current Performance Benchmarks at MHz Frequency

- **De-rating devices and understanding the C_{OSS} losses → better performance.**

- **Wireless power transfer - 6.78 MHz, 95% DC-DC efficiency Using GaN & SiC with Lowest C_{OSS} losses**

- **Radio frequency Power Amplifier - 40.68 MHz, 90% efficiency**

 - DC-TO-RF EFFICIENCY = 89%
 - POWER = 1500 W
 - FREQUENCY = 40.68 MHz

IEEE PELS: Power Semiconductors @ MHz

Prof. Juan Rivas

Stanford University
Conclusion

Symptom
- The C_{OSS} losses inhibit the performance of soft-switching converters in high-frequency applications.

Diagnosis
- Sawyer-Tower circuit is used to characterize C_{OSS} losses in GaN and SiC devices.
- GaN and SiC have different trends with voltage and frequency.

Treatment
- For GaN: Identifying trap energy levels and optimization on buffer design is critical in reducing C_{OSS} losses.
- For SiC: understanding and improving the termination structure is the top priority for better high-frequency performance.
References

Loss Measurements and Characterizations:

Pinpointing Physical Mechanisms:

Modeling the Dynamic Behavior:
Acknowledgments

Sponsors
- Stanford SystemX Alliance: ONSemiconductor, Daihen, Texas Instruments, LAM Research
- The Precourt Institute for Energy & the TomKat Center for Sustainable Energy
- National Science Foundation

Students and Collaborators
- **Superlab**
 - Students: Zikang Tong, Jia Zhuang, Kawin Surakitbovorn, Sanghyeon Park, Weston Braun, Jia Le Xu, Zhechi Ye, Carla Pinzon, Eric Stolt.
 - Postdoc: Dr. Lei Gu, Dr. Jason Poon.
 - Former students: Prof. Jungwon Choi (UMN), Dr. Wei Liang, Dr. Luke Raymond, Dr. Grayson Zulauf.